
ViTaS: Visual Tactile Soft Fusion Contrastive Learning for Visuomotor
Learning

Fig. 1: ViTaS is capable of handling various simulation and real-world manipulation tasks including transparent objects and
self-occluded scenarios, by fusing visual and tactile features for effective policy learning.

Abstract— Tactile information plays a crucial role in human
manipulation tasks and has recently garnered increasing at-
tention in robotic manipulation. However, existing approaches
mostly focus on the alignment of visual and tactile features and
the integration mechanism tends to be direct concatenation.
Consequently, they struggle to effectively cope with occluded
scenarios due to neglecting the inherent complementary nature
of both modalities and the alignment may not be exploited
enough, limiting the potential of their real-world deployment. In
this paper, we present ViTaS, a simple yet effective framework
that incorporates both visual and tactile information to guide
the behavior of an agent. We introduce Soft Fusion Contrastive
Learning, an advanced version of conventional contrastive
learning method and a CVAE module to utilize the alignment
and complementarity within visuo-tactile representations. We
demonstrate the effectiveness of our method in 12 simulated
and 3 real-world environments, and our experiments show
that ViTaS significantly outperforms existing baselines. We are
committed to making the code open-source.

I. INTRODUCTION

Humans are adept at performing complex manipulation
tasks, such as spinning an object or cleaning a table. While
vision plays a critical role, other modalities, particularly
touch, also provide rich information for these activities.
Interestingly, visual and tactile information often exhibit sig-
nificant relevance and complementarity [1]. For individuals
with visual impairments, a clearer mental reconstruction of
an original visual image can be achieved by combining a
blurred visual perception with tactile information [2].

Most previous visuomotor learning algorithms have relied
primarily on visual information to address manipulation

tasks [3]–[7]. Recently, several efforts have aimed to in-
corporate tactile information to improve the performance of
algorithms. M3L [8] directly concatenates visual and tactile
inputs and feeds them into MAE, while VTT [9] segments
visual and tactile data into patches and uses a transformer
to extract representations. However, these approaches fail
to exploit the inherent correspondence between visual and
tactile information, resulting in suboptimal performance on
challenging manipulation tasks. Moreover, many prior ap-
proaches overlook the complementary nature of visual and
tactile modalities, which could undermine performance in
self-occluded scenarios and potentially limit their practical
deployment. Given these limitations, we pose the question:
how can we more effectively fuse visual and tactile informa-
tion to enhance the performance of visuomotor algorithms?

Drawing on prior research in human physiology regard-
ing the processing of visuo-tactile information, we propose
Visual Tactile Soft Fusion Contrastive Learning (ViTaS),
a novel visuo-tactile representation learning framework for
visuomotor learning. Generally, ViTaS can be divided into
two parts. Firstly, given the inherent relevance between visual
and tactile modalities, we utilize contrastive learning to
align the embeddings of visual data with their corresponding
tactile information in the latent space. Notably, we employ
soft fusion contrastive learning, a novel method extending
the RGB single-modality framework presented in [10] to
fuse features in alternating modalities. Second, inspired
by humans’ remarkable ability to reconstruct clear mental
images from blurred visual input when supplemented with



Fig. 2: Method overview. ViTaS takes vision and touch as inputs, which are then processed through separate CNN encoders.
Encoded embeddings are utilized by soft fusion contrastive approach, yielding fused feature representation for policy network.
A CVAE-based reconstruction framework is also applied for cross-modal integration.

tactile information, we integrate a conditional variational
autoencoder (CVAE) [11] that leverages the complementary
nature of two modalities. The CVAE reconstructs visual
observations from fused visuo-tactile embeddings, enforcing
cross-modal consistency and enhancing the quality of mul-
timodal representations.

To evaluate the performance of our algorithm, we conduct
extensive experiments across both simulated and real-world
domains with RL and IL paradigms. Our simulation bench-
mark comprises 12 diverse manipulation tasks spanning 5
distinct environments. To rigorously assess generalization
capabilities, we extend our evaluation to 3 auxiliary tasks
featuring varied object geometries and environmental con-
ditions, complemented by comprehensive ablation studies
that dissect each component’s contribution. Furthermore, to
validate real-world applicability and handle more complex
manipulation scenarios, we deploy ViTaS within IL paradigm
for challenging real-world tasks, thereby establishing its
practical viability beyond simulation environments. Our ex-
perimental results demonstrate that ViTaS achieves state-
of-the-art performance compared with existing visuo-tactile
learning baselines.

In summary, our contributions are as follows:
• We improve the traditional contrastive learning method

and use it for the fusion of visual and tactile modalities.
• We propose ViTaS, a simple yet effective representation

learning paradigm that can integrate visual and tactile
inputs through soft fusion contrastive as well as CVAE,
utilizing it to guide the training of visuomotor learning.

• We evaluate our algorithm on various tasks in both
simulation and real-world environment, demonstrating
state-of-the-art performance against various baselines.

II. RELATED WORK

a) Visuo-Tactile Representation Learning: In recent
years, numerous cross-modal representation learning meth-
ods have emerged, particularly those focused on visuo-tactile

integration, as demonstrated by [5], [6], [12]–[20]. Among
them, [21] utilizes an adversarial loss to learn representation
in the latent space, while [9] leverages a transformer architec-
ture to integrate multiple modalities, introducing alignment
and contact loss to enhance performance. [8] proposes a
jointly visuo-tactile training scheme using an MAE-based
encoder trained through a reconstruction process.

Despite the success of these approaches in specific tasks,
they often fail to fully exploit the correspondence between
visual and tactile modalities, leading to suboptimal bench-
mark performance. In contrast, our method employs a sim-
pler yet highly effective CNN-based encoder to improve
the alignment and fusion of modalities, achieving superior
performance across multiple tasks.

b) Contrastive Learning: Extended into computer vi-
sion by the MoCo series [22], [23] and SimCLR [24],
contrastive learning has emerged as a prominent technique
for representation learning. We intend to extend the con-
trastive learning paradigm to a visuo-tactile framework for
reinforcement learning. Related examples include [25], [14],
[26], [27], [28], [10], [15], [25], [29] and [30]. Among the
works most closely related to ours, [14] proposes a visuo-
tactile fusion approach based on contrastive pre-training.
[30] employs contrastive loss within the visual modality to
enhance policy learning. [15] incorporates tactile, vision, and
text using contrastive learning to solve downstream tasks.

However, as [10] mentions, simply doing instance dis-
crimination tends to neglect some key information since two
resembling samples may be negatives for each other due to
distinct timesteps. The phenomenon also pops up in the field
of cross-modal contrastive learning. We refine the contrastive
learning method to alleviate the issue and better integrate
different modalities, which is elaborated in Section III-A.

III. METHOD

In this section, we elaborate Visual Tactile Soft Fusion
Contrastive Learning (ViTaS), an advanced visuo-tactile fu-
sion framework tailored for visuomotor learning illustrated



in Figure 2. To exploit the similarity between visual and
tactile information, we propose soft fusion contrastive learn-
ing (Section III-A), an extension of the conventional con-
trastive learning paradigm. Furthermore, to leverage their
complementarity and handle the self-occluded scenarios, we
integrate both modalities to guide the CVAE (Section III-B).
Next, we elaborate these main designs with details.

A. Soft Fusion Contrastive Learning

We define a trajectory as Γ = {oi, ti}Ni=1, where oi and
ti denote the visual and tactile observations at timestep i,
respectively. The encoders fo(·) and ft(·) map these obser-
vations into their latent representations. For simplicity, we
refer to oi and ti at the same timestep as dual counterparts.

Inspired by [10], we introduce soft fusion contrastive
learning, a novel cross-modal contrastive paradigm designed
to enhance multi-modal fusion. For brevity, we refer to it as
soft fusion contrastive. The central intuition is that visual and
tactile representations often exhibit strong structural align-
ment in non-occluded scenarios, making them particularly
well-suited for contrastive learning.

In the first stage, given an image observation oi, we
retrieve its top-K most similar images oi1 , · · · , oiK . The
corresponding dual tactile embeddings ti1 , · · · , tiK are then
designated as positive samples for ti, while all other tactile
maps are treated as negatives. With these positive and
negative pairs, we apply a contrastive learning objective
to train the encoder. Crucially, during this stage, only the
tactile encoder is updated, while the visual encoder remains
frozen. The resulting contrastive loss LCON,1,i is formulated
in Eq. (1). LCON,1,i = − log

F1,P1i
(i)

F1,P1i(i) + F1,N1i(i)
F1,S(i) =

∑
k∈S exp(ft(tk) · ft(ti) / τ)

(1)

Formally, P1i denotes the positive set of ti, defined as the
top-K most similar visual samples formulated in Eq. (2),
while N1i = S \ P1i denotes the negatives, where S is the
full sample set. The operator topKmaxk(fo(oi) ⊕ fo(ok))
retrieves the top-K most similar elements to the visual
feature of oi. The similarity between x and y is measured via
cosine similarity, denoted as x ⊕ y. K is a hyperparameter
set to 10, with its ablation results presented in Section IV-D.

P1i = {j|(fo(oj)⊕ fo(oi)) ∈ topKmaxk(fo(oi)⊕ fo(ok))}
(2)

In the next stage, to avoid modality imbalance, we peri-
odically swap the roles of oi and ti following [17], so that
the visual encoder could also be updated. The corresponding
objective and positive set are denoted as LCON,2,i and P2i,
formulated in Eq. (3) and Eq. (4). We also have N2i =
S \ P2i. LCON,2,i = − log

F2,P2i
(i)

F2,P2i
(i) + F2,N2i

(i)
F2,S(i) =

∑
k∈S exp(fo(ok) · fo(oi) / τ)

(3)

P2i = {j|(ft(tj)⊕ ft(ti)) ∈ topKmaxk(ft(ti)⊕ ft(tk))}
(4)

To further stabilize training, we alternate between LCON,1,i

and LCON,2,i using a switching schedule with period Tswitch.
Specifically, we define a coefficient sequence ui = 1/2 ×(
1− (−1)⌈i/T⌉) = [1, 1, · · · , 1, 0, 0, · · · , 0, 1, 1, · · · ], yield-

ing a binary mask that cycles between consecutive blocks of
ones and zeros. Full procedure is illustrated in the aqua block
of Figure 2. The overall contrastive objective is therefore:

LCON =

N∑
i=1

(ui · LCON,1,i + (1− ui) · LCON,2,i) (5)

A natural counterargument is that soft fusion contrastive
may be unnecessary, since temporally adjacent observations
are already similar and could be used as positives. However,
our ablation study (Section IV-D) demonstrates that this
temporal heuristic is suboptimal compared to our approach,
and we further provide an in-depth analysis of the reasons.

B. Conditional VAE Visuo-Tactile Feature Integration

VAE-based methods are widely adopted for visuo-tactile
integration [31], [32]. In self-occluded scenarios, the agent
should exploit the complementarity between visual and tac-
tile modalities rather than relying solely on their alignment.
Given the complementary information tactile map and image
offer, our objective is to fully exploit the fusion of image and
tactile embeddings, which could show superior performance
to using the embeddings solely. To this end, inspired by [33],
we adopt CVAE to reconstruct observations from the fused
embeddings, thereby enforcing cross-modal consistency. A
comprehensive depiction is presented in the pink block of
Figure 2.

Specifically, we establish condition on the concatenated
visuo-tactile feature c to reconstruct the current image frame
ocur. CVAE consists of an encoder pθ(·), decoder qψ(·), and
visuo-tactile embedding projector fϕ(·), which are parame-
terized by θ, ψ and ϕ separately. We use z to represent the
latent variables, and the reconstructed frame ôcur conditioned
on visuo-tactile feature c can be expressed as:

ôcur = qψ(pθ(ocur, fϕ(c)), fϕ(c)) (6)

In accordance with CVAE constraints, the target can be
formulated as:

LVAE = E
[
∥ocur − ôcur∥2

]
+DKL (pθ(z|ocur, c)∥ N (0, 1))

(7)

During training, the CVAE encoder, decoder, projector, and
the image and tactile encoders are jointly optimized. Only
the image and tactile encoders are retained for inference.

With two representation loss, we reach the final objective:

L = λLCON + µLVAE + Lpolicy (8)

where λ and µ are the coefficients to balance, and extra
policy loss Lpolicy depends on the RL or IL paradigms we
adopt. In RL case policy loss is LPPO, while LDP otherwise.
The value of λ, µ is elaborated in Section IV-D.



IV. EXPERIMENTS

We evaluate our method on several contact-rich tasks in
both simulation and real-world environments, in order to
clarify the following questions:
(i) Does ViTaS have the capability to solve complicated

manipulation tasks (e.g. dexterous hand rotation)?
(ii) How does ViTaS demonstrate generalization and ro-

bustness in tasks involving objects of various shapes,
significant noise or different physical parameters?

(iii) How does ViTaS perform in real-world settings?
All three questions will be elaborated in the following

parts. Moreover, ablation and qualitative studies are also
conducted for the understanding of components in ViTaS.

A. Simulation Environment Setup

Fig. 3: Tasks. Our method is evaluated on 12 simulation tasks
and 3 real-world tasks, with various embodiment types.

1) Tasks: We conduct experiments using 12 simulated
tasks, categorized into 5 primary parts shown in Figure 3
(a) to (f): (a). shadow dexterous hand tasks based on
Gymnasium [34] (Pen Rotate, Block Rotate, and Egg Ro-
tate); (b)(f). Robosuite [35]-based tasks; (c). Insertion tasks
originated by [8] simulated in MuJoCo; (d). Mobile-Catch
environment implemented by [36] and (e). Block Spinning
task created by [29]. Beyond these foundational experiments,
we introduce a series of auxiliary tasks involving altering
object shapes in Lift or modifying physical parameters in
Pen Rotation. The outcomes of (a)-(d), (f) environments are
quantified in terms of success rate, and (e) is assessed based
on training reward. (a)-(e) are trained with PPO, an effective
reinforcement learning paradigm, while (f) with imitation
learning is shown in Section IV-A.4.

2) Tactile sensors: It is crucial to integrate tactile sensors
to obtain tactile data for ViTaS framework. For the 3 in-
hand rotation and Wiping tasks, we employ the built-in tactile
modules. For Lift, Insertion, Door Opening, Box Stack and
Assembly, we employ a parallel gripper equipped with a 32×
32 × 3 tactile sensor at the contact surfaces between the
gripper and the object. Among the 3 channels of the tactile
map, channel 1 and 2 represent the normal force and channel
3 denotes shear force, following [37] and [6]. In the catch

and block spin tasks, we enhanced the Allegro hand and Leap
hand with tactile sensors by integrating four 3×3×3 sensors
on each finger (located at the proximal, middle, distal, and
tip segments) and one 3×3×3 sensor on the palm. Sensors
are zero-padded to form a 32× 32× 3 input following [8].

3) Comparison methods: We compare ViTaS against 6
visuo-tactile representation learning baselines:

• M3L [8]: A visuo-tactile fusion training algorithm uti-
lizing the MAE encoder for PPO policy learning.

• VTT [9]: A visuo-tactile fusion training method rooted
in the transformer architecture.

• PoE [12]: A VAE-like framework to fuse two modality.
• Concatenation [13]: A multi-modal fusion method with

contrastive method used to help training.
• MViTac [14]: A framework based on contrastive pre-

training to fuse two modality, abbreviated as MVT.
• ConViTaC [38]: A visuo-tactile fusion method with

contrastive learning, abbreviated as CVT.

Fig. 4: ViTaS with Imitation Learning. The imitation
learning paradigm is adopted to further test feature extraction
ability of ViTaS in different settings, which we use for both
simulation and real world tasks.

4) ViTaS with Imitation Learning: To further assess Vi-
TaS’s capability in extracting and integrating multimodal
features across diverse scenarios, we adopt Diffusion Policy
(DP) [39], a pioneering generative framework for robotic
manipulation that formulates action prediction as a condi-
tional denoising process, for both simulation and real-world
evaluations. As illustrated in Figure 4, we replace DP’s
original CNN and transformer encoders with those from
ViTaS, while retaining the same training procedure for soft
fusion contrastive and CVAE modules as in simulation. For
example, within the CVAE module, images are reconstructed
from combined visuo-tactile embeddings. We evaluate on
3 benchmark tasks, Box Stack, Wiping and Assembly. To
ensure a fair comparison, DP receives inputs from 3 cameras,
whereas ViTaS relies solely on a single head camera and tac-
tile sensors. This setting highlights that properly leveraging
tactile features can compensate for reduced image, exhibiting
robustness under limited visual input.



B. Simulation Experiment Results

1) RL and IL results: Our algorithm is compared against 4
baseline methods across 9 primitive tasks ((a)-(e) in Figure 3)
for reinforcement learning. We evaluate each algorithm in
each environment 5 times under different random seeds, and
average the results when training 3×106 timesteps to obtain
the performance metrics. As for imitation learning, we train
all methods across 3 harder tasks ((f) in Figure 3) for 103

epochs, with 50 collected expert demonstrations per task.

TABLE I: Performance. Each experiment repeats 5 times.
Green for optimal results while purple for suboptimal.

Tasks / Methods ViTaS MVT CVT M3L PoE VTT Concat
Insertion 98.2 64.3 83.9 72.1 11.4 78.6 19.3

Door 100.0 100.0 100.0 100.0 98.2 99.8 100.0

Lift 97.5 97.9 70.2 20.6 71.9 70.4 76.7
Pen Rotate 99.2 77.1 79.6 73.1 0.3 0.7 2.9

Dual Arm Lift 100.0 87.5 90.8 88.2 92.6 77.1 76.8
Mobile Catch 64.9 44.2 64.2 15.8 0.4 53.3 0.6

Egg Rotate 85.7 71.6 58.1 4.2 0.9 0.5 0.7
Block Rotate 93.3 69.1 70.4 11.6 0.8 1.3 4.4
Block Spin 70.5 35.7 43.4 30.8 20.6 0.9 15.7

Insertion Noisy 89.2 51.6 70.5 47.3 20.7 63.4 26.9
Lift w/ Cap 99.6 67.8 49.9 54.2 58.1 54.7 87.5

Lift w/ Can 97.8 76.7 55.9 41.3 52.6 69.4 75.8
Average 91.4 70.3 71.5 46.6 35.7 47.5 40.6

TABLE II: Simulation imitation learning results. Each
experiment repeats 3 times with different random seeds.

Methods / Tasks Box Stack Wiping Assembly Average

DP w/ ViTaS 53.3 71.7 56.3 60.4

DP w/ CNN 29.7 57.0 28.0 38.2
DP w/ Transformer 30.3 45.0 25.0 33.4

TABLE III: Generalization ability.

Tasks / Methods ViTaS MVT CVT M3L

Pen Rotate w/ Fixed Target 99.2 77.1 79.6 73.1

Pen Rotate w/ Random Target 78.4 47.5 51.3 42.7

As the results shown in Table I, several baselines show
excellent performance in simple tasks like Door Open and
Insertion. However, for tough tasks like Egg Rotate and
Block Rotate, which require methods to incorporate visual
and tactile information jointly, few baselines can solve it
within a limited horizon, while ViTaS maintains its per-
formance. Moreover, as shown in Table II, ViTaS shows
superior performance against DP in all 3 tasks, showing the
huge difference touch could make in manipulation tasks.
This underscores its exceptional capability to extract
features and solve complex tasks, clarifying question (i).

2) Generalization and robustness results: In order to
assess the generalization capability of our approach, we
introduce auxiliary variants of the previously mentioned
Lift and Pen Rotate tasks. the object shape in Lift task is
modified from a cube to cylinder and capsule in both training
and testing phases, allowing us to evaluate the method’s

resilience to changes in object geometry. As for the Pen
Rotate task, we randomize the target angle within a large
range to test the generalization of methods. Furthermore, to
test the robustness, we also add Gaussian noise with 0.3
noise level in Insertion task. The intensity of Gaussian noise
of different noise levels could refer to Figure 6. All other
settings are in alignment with the preceding 9 tasks.

As illustrated in Table I, when the object shape is changed,
every baseline model experiences a performance drop when
training 3 × 106 timesteps, indicating sensitivity to these
alterations. ViTaS, however, exhibits a negligible decrease,
demonstrating its resilience to variations in object geometry.
Moreover, as the results shown in Table III, ViTaS demon-
strates superior generalization ability to other baselines,
given the performance in the randomized target position of
Pen Rotate task. The results across all auxiliary tasks
provide a clear answer to question (ii).

C. Real-World Experiment

Fig. 5: Real-World Robot Setting.

1) Tasks: To better understand the overall performance
of ViTaS, we develop 3 real-world experiments to show
the effectiveness, shown in Figure 3 (g): (1). Dual Arm
Clean (DAC). The robot has to sweep a small amount of
rubbish (e.g. a piece of paper ball) to the trash can. (2).
Table Pick Place (TPP). The robot has to move the bottles
or cans to the coaster. This task has two settings: one (TPP-1)
uses a single type of bottle and the other (TPP-3) uses three
types. (3). Fridge Pick Place (FPP). The robot has to move
the bottles from third level to the second of refrigerator.

2) Experiment setup: The overall working space is shown
in Fig 5. We use Galaxea-R1 Humanoid Robot for manipu-
lation, with tactile sensors attached to the end effector.

• Camera: we use multiple cameras to obtain RGB vi-
sual information. Only the head camera of Galaxea-
R1 (Zed 2) is used in all ViTaS experiments, while 2
wrist cameras (RealSense D435i) are needed for better
performance in some baseline experiments.

• Tactile sensors: We use sensors mentioned in [40]
producing real-time 16 × 16 × 1 discrete 1D haptic
maps for tactile information. The tactile sensors are
attached to the gripper, obtaining tactile maps during
data collecting and inference. A snapshot shown in Fig-
ure 5 demonstrates that when grippers contact objects,
corresponding position of tactile maps have numerical
changes (displayed in light colors) compared to others.

• Data collection: We collect 100 real-world expert trajec-
tories for each task, using Meta Quest 3 to teleoperate.



3) ViTaS in real world: As mentioned in Section IV-A.4,
we also adopt imitation learning paradigm for real-world
experiments, where the pipeline is shown in Figure 4. It is
noteworthy that the real-world setting differs slightly from
the simulation environment, requiring minor adaptations to
achieve better empirical performance. To accommodate the
1D haptic map produced by our tactile sensor, the CNN
tactile encoder is adjusted accordingly from 32× 32× 3 to
16×16×1. Both ViTaS and DP are trained with real data for
103 epochs, and are then used for real-world R1 humanoid
to calculate success rate in manipulation tasks. Since we use
real data for training, there is no sim-to-real issues for ViTaS.

4) Comparing method: In resemblance with the simula-
tion experiment settings, we compare ViTaS with DP in the
real world. Given the CNN encoder shows better results in
Table II, we use learning-from-scratch CNN encoder for DP
to assess the performance. Notably, ViTaS uses only the head
camera and tactile sensor as input, whereas DP leverages all
three cameras (head, left, right), thus receiving richer visual
information. This comparison highlights that ViTaS achieves
superior performance despite having access to less sensory
input, further demonstrating its effectiveness.

5) Results: We have done Table Pick Place and Fridge
Pick Place with 25 repetitions, with the target position
shifted slightly each time. We also complete Dual Arm Clean
with 10 repetitions, placing only one piece of litter during
benchmarking. The results are shown in table IV.

TABLE IV: Real-world experiment results.

Method / Tasks DAC TPP-1 TPP-3 FPP Average

ViTaS 30.0 42.0 36.0 76.0 46.0

DP 20.0 36.0 24.0 40.0 30.0

ViTaS consistently outperforms DP across 3 real-world
tasks, achieving an average success rate improvement of
16%, despite relying on reduced camera input. Addition-
ally, a comparative analysis of tasks TPP-1 and TPP-3
demonstrates ViTaS’s superior generalization, with a smaller
performance drop between tasks compared to DP. Notably,
occlusions induced by the robotic arm in the head camera’s
field of view can impair visual perception. Nevertheless,
ViTaS maintains robust performance, suggesting that tactile
sensing effectively compensates for these visual limitations.
This resilience highlights the efficacy of the CVAE mech-
anism in handling self-occlusion scenarios, underscoring
ViTaS’s ability to integrate both modalities seamlessly. Given
the better performance in real-world settings, we reach the
answer to question (iii).

D. Ablation Study

To verify the fidelity of each component in ViTaS, we con-
duct extensive ablation experiments, showing the necessity of
different designs. The general ablation results are presented
in Table V, where we use abbreviations of experiments in the
first row, corresponding to ViTaS, w/o. TActile information,
w/ Unified Encoder, w/o. Soft fusion contrastive module,
w/o. CVAE, w/ Time Contrastive, K = 1, K = 20 and

K = 50. The results are shown in columns V, TA, U, S, C,
TC, K1, K20, K50, respectively. Detailed analysis of each
experiment is clarified in the following sections.

TABLE V: Ablation study. Each experiment repeats 5 times.
Green for optimal results while purple for suboptimal.

Tasks V TA U S C TC K1 K20 K50
Insertion 99.2 88.1 61.6 90.3 71.1 75.2 83.3 85.1 78.7

Block Rotate 92.7 67.7 18.4 67.7 70.2 79.5 88.0 77.9 70.1

Egg Rotate 85.3 24.3 3.3 6.5 48.4 57.7 65.2 41.2 3.6

Average 92.5 60.9 27.1 54.7 63.2 70.6 78.8 68.1 67.3

Is tactile information crucial? We conduct 2 main exper-
iments in this part. First we eliminate the tactile information,
retaining only the visual data, and solely utilize the image en-
coder, while handling the corresponding tactile information
through zero-padding. Additionally, the workflow outlined in
[8] employs a unified MAE encoder across both modalities
which overlooks their inherent differences and may result
in less discriminative features and reduced effectiveness. To
further demonstrate that tactile maps provide complementary
information requiring separate encoders, we also design
an experiment where visual and tactile inputs are directly
concatenated and processed by a shared encoder.

The TA-column in Table V show that when ablating tactile
information, the success rate drops 32% on average. Thus, we
prove that tactile information is crucial in manipulation tasks.
Using a unified encoder, however, is not a good choice either,
given the poor performance in the U-column in Table V,
especially for the 2 rotation tasks. We attribute this result
to the fact that unified encoder integrate both modalities
roughly, neglecting the inherent discrepancy of visual and
tactile maps which separate encoders could alleviate.

How much do CVAE and soft fusion contrastive con-
tribute to ViTaS? In order to clarify the effectiveness of each
component, we remove the CVAE and soft fusion contrastive
separately, conducting experiments on the same benchmarks.
Results of ViTaS without CVAE or soft fusion contrastive are
shown in S and C-column of Table V. The performance drops
heavily without CVAE or soft fusion contrastive learning,
showing the necessity of two main designs.
K in soft fusion contrastive learning. We explore the

impact of varying K, for instance, setting it to 1, 10 (ours),
20 and 50, to observe how the results are affected. It is
noteworthy that image and tactile at the same timestep are
the only positives for each other when K = 1, adopting
the same process as conventional cross-modal contrastive
learning. Therefore, by comparing results between ours and
K = 1, we can also clarify whether soft fusion contrastive
could outperform conventional contrastive learning method.

The last 3 columns of Table V show the effectiveness of
different K in ViTaS. The results when K = 1 show that
though conventional contrastive learning can achieve rela-
tively excellent performance, it still has gap with ViTaS (i.e.
K = 10), while too large K also causes performance drops.

Soft fusion contrastive vs. time contrastive. To verify



the effectiveness of soft contrastive in another perspective,
we carry out experiments utilizing an alternative contrastive
approach, namely time contrastive, to highlight the indis-
pensable role of cross-modal soft fusion contrastive learning.
Neighboring frames (i.e. a fixed number of preceding and
succeeding frames) are treated as positives in this method,
while distant frames serve as negatives, echoing with [41].
The motivation behind the ablation lies in that, as mentioned
in Section III-A, despite frames within close time intervals
often appearing to be similar, it is crucial during the con-
trastive learning process to identify the K most analogous
frames, which may not necessarily be temporally adjacent.
This distinction underscores the importance of going beyond
mere time contrastive. As shown in TC-column in table V,
soft fusion contrastive learning is necessary as it outperforms
time contrastive.

Weight ablation in learning objective. In Eq. (8), λ, µ
indicate the weights of soft fusion contrastive and CVAE
modules, and we initially set λ = 1, µ = 0.1. To confirm
that these parameters are indeed optimal, we conduct an
ablation study by systematically varying the coefficients and
evaluating the performance of our method on two particularly
challenging tasks. As shown in Table VI, the performance
when λ = 1, µ = 0.1 is superior to other settings, showing
the rationale of our chosen weights.

TABLE VI: Ablation on λ, µ in learning objective.

µ (λ = 1) 0.1 (ViTaS) 0.01 1 10 0.5 0.05
Egg Rotate 85.7 42.5 67.7 58.4 68.6 77.8

Block Rotate 93.3 60.3 74.1 48.9 80.2 76.5

λ (µ = 0.1) 1 (ViTaS) 0.1 10 100 5 0.5
Egg Rotate 85.7 57.9 55.2 41.3 69.1 78.8

Block Rotate 93.3 74.0 66.9 43.2 79.8 85.1

In conclusion, our ablation study delves deep into our al-
gorithm to analyze the effectiveness of each component. The
results prove that tactile information, soft fusion contrastive
learning and CVAE are of high importance, while soft fusion
contrastive performs better than other contrastive methods
like conventional contrastive learning and time contrastive.

E. Qualitative Analysis

To demonstrate the impact of the ViTaS, we use weights
in the Egg Rotate task to reconstruct images from pure
Gaussian noise conditioned on visuo-tactile embeddings. We
compare performance under different noise levels in the
observation space (visual and tactile) against the token-based
MAE in M3L. Moreover, to validate CVAE’s role in cross-
modal complementarity, we ablate the two main designs
respectively by blocking gradients of soft fusion contrastive
or CVAE propagating back to the image and tactile encoders,
while keeping the CVAE encoder–decoder trainable. We then
reconstruct occluded images given concatenated visuo-tactile
features as condition from Gaussian noise.

As illustrated in Figure 6 (a), the results indicate that
ViTaS surpasses the token-based MAE in reconstructing
critical interaction details, such as the egg’s location, which

Fig. 6: Reconstruction visualization. (a) compares the
reconstruction quality of ViTaS and M3L under varying noise
levels. (b) presents ViTaS reconstructions under heavy noise
applied to different modalities. (c) illustrates reconstruction
performance under masking when ablating key designs.

is vital for the task. Our method also maintains robust under
higher level of noise, underscoring the high quality of the
visuo-tactile embeddings used as conditions. In Figure 6 (b),
applying heavy noise (noise level 0.5) to one modality yields
better reconstructions than adding noise to both, demon-
strating vision–touch complementarity. Figure 6 (c) shows
that even with core image regions masked, ViTaS reliably
reconstructs observations when guided by tactile and masked
visual features, validating CVAE’s role in handling self-
occlusion and complementarity between two modalities.

V. CONCLUSION AND LIMITATIONS

In general, we present ViTaS, a concise yet effective visuo-
tactile fusion framework. Analogous to human physiology, it
extends visual and tactile perception to RL and IL, achieving
strong results in both simulation and real-world experiments.
Specifically, soft fusion contrastive learning extracts key fea-
tures across modalities, while a CVAE module exploits their
complementarity. Real-world experiments confirm ViTaS’s
effectiveness, and ablation study plus qualitative analysis
highlight the necessity of each component.

Despite its success, ViTaS faces 2 main limitations. The
first is that due to the physical capability and the bottleneck
of RL in high-dimensional cases, some high dynamic accu-
rate manipulation like pen spinning in real world remains
challenging. The other is that the potential of visuo-tactile
sensing in deformable object manipulation [42] warrants
extra exploration. In the future, we will further explore the
ability of fused visuo-tactile features in more complex sce-
narios, with advanced simulation and real-world platforms.
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manipulation using a modular reinforcement learning architecture,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 1852–1858.

[5] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik,
“Learning visuotactile skills with two multifingered hands,” arXiv
preprint arXiv:2404.16823, 2024.

[6] J. Xu, S. Kim, T. Chen, A. R. Garcia, P. Agrawal, W. Matusik, and
S. Sueda, “Efficient tactile simulation with differentiability for robotic
manipulation,” in Conference on Robot Learning. PMLR, 2023, pp.
1488–1498.

[7] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik, “In-hand object
rotation via rapid motor adaptation,” in Conference on Robot Learning.
PMLR, 2023, pp. 1722–1732.

[8] C. Sferrazza, Y. Seo, H. Liu, Y. Lee, and P. Abbeel, “The power of
the senses: Generalizable manipulation from vision and touch through
masked multimodal learning,” 2023.

[9] Y. Chen, M. Van der Merwe, A. Sipos, and N. Fazeli, “Visuo-tactile
transformers for manipulation,” in 6th Annual Conference on Robot
Learning, 2022.

[10] T. Han, W. Xie, and A. Zisserman, “Self-supervised co-training
for video representation learning,” Advances in neural information
processing systems, vol. 33, pp. 5679–5690, 2020.

[11] K. Sohn, H. Lee, and X. Yan, “Learning structured output represen-
tation using deep conditional generative models,” Advances in neural
information processing systems, vol. 28, 2015.

[12] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese,
L. Fei-Fei, A. Garg, and J. Bohg, “Making sense of vision and touch:
Learning multimodal representations for contact-rich tasks,” IEEE
Transactions on Robotics, vol. 36, no. 3, pp. 582–596, 2020.

[13] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei,
A. Garg, and J. Bohg, “Making sense of vision and touch: Self-
supervised learning of multimodal representations for contact-rich
tasks,” in 2019 International conference on robotics and automation
(ICRA). IEEE, 2019, pp. 8943–8950.

[14] V. Dave, F. Lygerakis, and E. Rueckert, “Multimodal visual-tactile rep-
resentation learning through self-supervised contrastive pre-training,”
arXiv preprint arXiv:2401.12024, 2024.

[15] F. Yang, C. Feng, Z. Chen, H. Park, D. Wang, Y. Dou, Z. Zeng,
X. Chen, R. Gangopadhyay, A. Owens et al., “Binding touch to
everything: Learning unified multimodal tactile representations,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 26 340–26 353.

[16] H. Li, Y. Zhang, J. Zhu, S. Wang, M. A. Lee, H. Xu, E. Adelson,
L. Fei-Fei, R. Gao, and J. Wu, “See, hear, and feel: Smart sensory
fusion for robotic manipulation,” arXiv preprint arXiv:2212.03858,
2022.

[17] M. Yang, Y. Lin, A. Church, J. Lloyd, D. Zhang, D. A. Barton, and
N. F. Lepora, “Sim-to-real model-based and model-free deep rein-
forcement learning for tactile pushing,” IEEE Robotics and Automation
Letters, 2023.

[18] S. Li, Z. Wang, C. Wu, X. Li, S. Luo, B. Fang, F. Sun, X.-P. Zhang,
and W. Ding, “When vision meets touch: A contemporary review
for visuotactile sensors from the signal processing perspective,” arXiv
preprint arXiv:2406.12226, 2024.

[19] S. Li, X. Yin, C. Xia, L. Ye, X. Wang, and B. Liang, “Tata: A
universal jamming gripper with high-quality tactile perception and
its application to underwater manipulation,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
6151–6157.

[20] Y. Lu, Y. Tian, Z. Yuan, X. Wang, P. Hua, Z. Xue, and H. Xu, “H 3̂
dp: Triply-hierarchical diffusion policy for visuomotor learning,” arXiv
preprint arXiv:2505.07819, 2025.

[21] Y. Li, J.-Y. Zhu, R. Tedrake, and A. Torralba, “Connecting touch and
vision via cross-modal prediction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 609–10 618.

[22] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 9729–9738.

[23] X. Chen, S. Xie, and K. He, “An empirical study of training self-
supervised vision transformers,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 9640–9649.

[24] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in Interna-
tional conference on machine learning. PMLR, 2020, pp. 1597–1607.

[25] D. Wang and M. Hu, “Contrastive learning methods for deep rein-
forcement learning,” IEEE Access, vol. 11, pp. 97 107–97 117, 2023.

[26] X. Yuan, Z. Lin, J. Kuen, J. Zhang, Y. Wang, M. Maire, A. Kale, and
B. Faieta, “Multimodal contrastive training for visual representation
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 6995–7004.

[27] M. Laskin, A. Srinivas, and P. Abbeel, “Curl: Contrastive unsupervised
representations for reinforcement learning,” in International confer-
ence on machine learning. PMLR, 2020, pp. 5639–5650.

[28] D. Wang and M. Hu, “Contrastive learning methods for deep rein-
forcement learning,” IEEE Access, 2023.

[29] Z. Yuan, T. Wei, S. Cheng, G. Zhang, Y. Chen, and H. Xu, “Learn-
ing to manipulate anywhere: A visual generalizable framework for
reinforcement learning,” arXiv preprint arXiv:2407.15815, 2024.

[30] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin, “Learning
visual robotic control efficiently with contrastive pre-training and
data augmentation,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 4040–4047.

[31] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine,
“Visual reinforcement learning with imagined goals,” Advances in
neural information processing systems, vol. 31, 2018.

[32] C. Bai, P. Liu, K. Liu, L. Wang, Y. Zhao, L. Han, and Z. Wang,
“Variational dynamic for self-supervised exploration in deep reinforce-
ment learning,” IEEE Transactions on neural networks and learning
systems, vol. 34, no. 8, pp. 4776–4790, 2021.

[33] P. Bachhav, M. Todisco, and N. Evans, “Latent representation learning
for artificial bandwidth extension using a conditional variational auto-
encoder,” in ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 7010–
7014.

[34] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu,
M. Goulão, A. Kallinteris, M. Krimmel, A. KG et al., “Gymnasium:
A standard interface for reinforcement learning environments,” arXiv
preprint arXiv:2407.17032, 2024.

[35] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” arXiv preprint arXiv:2009.12293,
2020.

[36] Y. Zhang, T. Liang, Z. Chen, Y. Ze, and H. Xu, “Catch it! learn-
ing to catch in flight with mobile dexterous hands,” arXiv preprint
arXiv:2409.10319, 2024.

[37] I. H. Taylor, S. Dong, and A. Rodriguez, “Gelslim 3.0: High-resolution
measurement of shape, force and slip in a compact tactile-sensing
finger,” in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 10 781–10 787.

[38] Z. Wu, Y. Zhao, and S. Luo, “Convitac: Aligning visual-tactile fusion
with contrastive representations,” arXiv preprint arXiv:2506.20757,
2025.

[39] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion policy: Visuomotor policy learning via ac-
tion diffusion,” The International Journal of Robotics Research, p.
02783649241273668, 2023.

[40] B. Huang, Y. Wang, X. Yang, Y. Luo, and Y. Li, “3d-vitac: Learning
fine-grained manipulation with visuo-tactile sensing,” arXiv preprint
arXiv:2410.24091, 2024.

[41] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
S. Levine, and G. Brain, “Time-contrastive networks: Self-supervised
learning from video,” in 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, 2018, pp. 1134–1141.

[42] C. Jiang, W. Xu, Y. Li, Z. Yu, L. Wang, X. Hu, Z. Xie, Q. Liu, B. Yang,
X. Wang et al., “Capturing forceful interaction with deformable
objects using a deep learning-powered stretchable tactile array,” Nature
Communications, vol. 15, no. 1, p. 9513, 2024.


	Introduction
	Related Work
	Method
	Soft Fusion Contrastive Learning
	Conditional VAE Visuo-Tactile Feature Integration

	Experiments
	Simulation Environment Setup
	Tasks
	Tactile sensors
	Comparison methods
	ViTaS with Imitation Learning

	Simulation Experiment Results
	RL and IL results
	Generalization and robustness results

	Real-World Experiment
	Tasks
	Experiment setup
	ViTaS in real world
	Comparing method
	Results

	Ablation Study
	Qualitative Analysis

	Conclusion and Limitations
	References

