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Fig. 1: ViTaS is capable of handling various real-world manipulation tasks, including transparent objects and self-occluded
scenarios, by fusing visual and tactile observations into a unified representation for effective policy learning.

Abstract— Tactile information plays a crucial role in human
manipulation tasks and has recently garnered increasing at-
tention in robotic manipulation. However, existing approaches
struggle to effectively integrate visual and tactile information,
resulting in sub-optimal performance. In this paper, we present
ViTaS, a simple yet effective framework that incorporates
both visual and tactile information to guide the behavior of
an agent. We introduce Soft Fusion Contrastive Learning, an
advanced version of conventional contrastive learning method,
to enhance the fusion of these two modalities, and adopt a
CVAE module to utilize complementary information within
visuo-tactile representations. We demonstrate the effectiveness
of our method in 9 simulated and 3 real-world environments,
and our experiments show that ViTaS significantly outperforms
existing baselines. The code will be released upon acceptance.

I. INTRODUCTION

Humans are adept at performing complex manipulation
tasks, such as spinning an object or cleaning a table. While
vision plays a critical role, other modalities, particularly
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touch, also provide rich information for these activities.
Interestingly, visual and tactile information often exhibit sig-
nificant relevance and complementarity [1]. For individuals
with visual impairments, a clearer mental reconstruction of
an original visual image can be achieved by combining a
blurred visual perception with tactile information [2].

Most previous reinforcement learning (RL) algorithms
have relied primarily on visual information to address manip-
ulation tasks [3]–[12]. Recently, several efforts have aimed to
incorporate tactile information to improve the performance of
RL algorithms. However, these approaches generally exhibit
limited fusion between the two modalities. For instance,
[13] directly concatenates visual and tactile inputs and feeds
them into MAE, while [14] segments visual and tactile
data into patches and uses a transformer to extract rep-
resentations. As a result, these methods often demonstrate
limited performance in contact-rich manipulation tasks that
rely heavily on both visual and tactile inputs, such as in-
hand rotation. Moreover, many previous methods employ
complex encoders like transformers and MAE, which involve
intricate architectures with numerous parameters, rendering
the process of hyperparameter tuning particularly tricky.
Given these limitations, we pose the question: how can
we more effectively fuse visual and tactile information, to



enhance the performance of RL algorithms for manipulation?
Drawing on prior research in human physiology regard-

ing the processing of visuo-tactile information, we propose
Visual Tactile Soft Fusion Contrastive Learning (ViTaS),
a novel visuo-tactile representation learning framework for
reinforcement learning. Generally, ViTaS can be divided into
two parts. Firstly, given the inherent relevance between visual
and tactile modalities, we utilize contrastive learning to align
the embeddings of visual data with their corresponding tactile
information in the latent space. Notably, we employ soft
fusion contrastive learning inspired by [15] to fuse features
in alternated modalities. Specifically, we extend the original
RGB single-modality framework to incorporate both visual
and tactile modalities, enabling the agent to leverage samples
of different timesteps with similar tactile information as pos-
itive samples. Secondly, inspired by the ability of humans to
reconstruct clear images from blurred visual inputs combined
with tactile information and complementarity of two modali-
ties, we integrate conditional variational autoencoder (CVAE)
introduced by [16] to reconstruct the original image with the
embeddings of vision and touch, further improving the fusion
of visual and tactile information.

To evaluate the performance of our algorithm, we conduct
both simulated and real-world experiments. In simulation, 9
tasks across 5 environments are introduced: Insertion [13],
Gymnasium [17], Robosuite [18], Mobile Catch [19] and
Block Spin [20]. Additionally, to demonstrate the gener-
alization capability of our system, we perform further ex-
periments on 3 auxiliary tasks, as well as several ablation
studies. The overall experiment results in Table I show
that ViTaS achieves state-of-the-art performance compared
to other visuo-tactile learning methods in all tasks, with an
average success rate of 92% and average improvement of
51%. In real-world settings, we integrate ViTaS into imitation
learning paradigm, with an increase of 16% compared to
baseline in 3 hard manipulation tasks.

In summary, our contributions are as follows:
• We improve the traditional contrastive learning method

and use it for the fusion of visual and tactile modalities.
• We propose ViTaS, a simple yet effective representation

learning paradigm that can integrate visual and tactile
inputs through soft fusion contrastive as well as CVAE,
and utilize it to guide the training of reinforcement
learning, imitation learning and visuo-motor agent.

• We evaluate our algorithm on various tasks in both
simulation and real-world environment, demonstrating
state-of-the-art performance against various baselines.

II. RELATED WORK

a) Visuo-Tactile Representation Learning: In recent
years, numerous cross-modal representation learning meth-
ods have emerged, particularly those focused on visuo-tactile
integration, as demonstrated by [21], [9], [10], [21]–[28].
Among them, [29] utilizes an adversarial loss to learn rep-
resentation in the latent space, while [14] leverages a trans-
former architecture to integrate multiple modalities, intro-
ducing alignment and contact loss to enhance performance.

[13] proposes a jointly visuo-tactile training scheme using
an MAE-based encoder trained through a reconstruction
process, with the encoder co-trained for policy learning.

Despite the success of these approaches in specific tasks,
they often fail to fully exploit the correspondence between
visual and tactile modalities, leading to suboptimal encoder
training and reduced success rates in tasks such as dexter-
ous hand manipulation. In contrast, our method employs a
simpler yet highly effective CNN-based encoder to improve
the alignment and fusion of modalities, achieving superior
performance across multiple benchmark tasks.

b) Contrastive Learning: Extended into computer vi-
sion by the MoCo series [30], [31] and SimCLR [32],
contrastive learning has emerged as a prominent technique
for representation learning. We intend to extend the con-
trastive learning paradigm to a visuo-tactile framework for
reinforcement learning. Related examples include [33], [23],
[34], [35], [36], [15], [24], [33], [20] and [37]. Among the
works most closely related to ours, [23] proposes a visuo-
tactile fusion approach based on contrastive pre-training.
[37] employs contrastive loss within the visual modality to
enhance policy learning. [24] incorporates tactile, vision, and
text using contrastive learning to solve downstream tasks.
[15] advances contrastive learning paradigm by using top K
analogous samples in optical flow as positive samples in the
RGB modality.

However, as [15] mentions, simply doing instance dis-
crimination tends to neglect some key information since two
resembling samples may be negatives for each other due to
distinct timesteps. The phenomenon also pops up in the field
of cross-modal contrastive learning. We refine the contrastive
learning method to alleviate the issue and better integrate
different modalities, which is elaborated in Section III-A.

III. METHOD

Fig. 2: Method overview. The agent takes information from
two modalities, visual and tactile, as inputs, which are then
processed through separate CNN encoders. Encoded em-
beddings are utilized by cross-modal soft fusion contrastive
approach, yielding fused feature representation for policy
network. A CVAE-based reconstruction framework is also
applied for cross-modal integration.



In this section, we elaborate Visual Tactile Soft Fusion
Contrastive Learning (ViTaS), an advanced visuo-tactile fu-
sion framework tailored for reinforcement learning. We note
that when two tactile maps are resembling, the key features
derived from the corresponding visual data should likewise
bear a strong resemblance and vice versa. This alignment
makes the data particularly well-suited for contrastive learn-
ing. Meanwhile, given the complementary information tactile
and image offer, our objective is to reconstruct the fea-
tures extracted from two modalities, obtaining outputs with
enriched and more detailed information. CVAE is a good
candidate for this process. Therefore, ViTaS fuses visual
and tactile modalities through the collaboration of Cross-
modal Soft Fusion Contrastive Learning (Section III-A) and
CVAE (Section III-B). We utilize the PPO [38], an on-
policy reinforcement learning strategy, for the underlying
algorithm framework of our method. Formally, our ultimate
reinforcement learning objective can be defined as follows:

L = λLCON+µLVAE+LPPO, (1)

where λ ,µ be tunable parameters to bridge the gap between
various components.

A. Soft Fusion Contrastive Learning

We denote a trajectory as Γ = {oi, ti}N
i=1, where oi stands

for image observation at i-th timestep and ti for tactile inputs,
with total length N. For simplicity, we denote oi and ti are
dual samples of each other. We use two convolutional neural
networks separately to extract features from raw images and
tactile maps. Formally, we denote fo(·) and ft(·) as the image
and tactile extractors respectively.

Inspired by [15], we present soft fusion contrastive learn-
ing, a novel cross-modal contrastive learning paradigm to
enhance the fusion of two modalities. We use soft fusion
contrastive below for simplicity. Specifically, we accomplish
this by identifying the K most analogous samples from one
modality, say modality A , leveraging their dual samples as
positives for each other in alternated modality B. During
the process, the parameters of the encoder corresponding to
modality A are frozen, with the counterpart in B updated
actively. K is a hyper-parameter representing the number of
positives needed to be utilized. Then, we reach the following
formula in accordance to the description above as Section III.

In the formula, we denote P1(i) as the set of positives
of oi, calculated by K most similar samples in correspond-
ing inputs in tactile modality, while N1(i) as negatives. S
stands for universal samples of oi in one trajectory. We use
topKmaxk(U) to obtain the top K similar samples in set
U , which is obtained in replay buffer in implementation.
Sim(x,y) calculate the similarity between key features x and
y. We use cosine similarity to achieve this and we would like
to emphasize that we discern positives by extracted features,
where the encoders walk in.

Similarly, we periodically change the position of ti and
oi like workflow presented in [26] to update both encoders
equally, and the corresponding metrics are then denoted

LCON,2,i and P2(i). Moreover, we replace all oi, fo(·) in the
above formula with ti, ft(·) and vice versa.

To achieve a more balanced update of the target, we
adopt alternating updates when calculating ultimate objective
LCON according to LCON,1/2,i. Specifically, LCON is con-
tributed by LCON,1,i at start, and shifted to LCON,2,i after
exact Tswitch steps and so forth. Furthermore, we define
the coefficient sequence as ui = 1/2 ×

(
1− (−1)⌈i/T⌉) =

[1,1, · · · ,1,0,0, · · · ,0,1,1, · · · ]. Consequently, the target of
the contrastive loss can be written as:

LCON =
N

∑
i=1

ui ·LCON,1,i+(1−ui) ·LCON,2,i (3)

B. Conditional VAE Visuo-Tactile Feature Integration

In the realm of visuo-tactile integration, VAE-based meth-
ods are commonly employed [39], [40]. Inspired by [41], we
extend the CVAE framework for visuo-tactile fusion by in-
corporating the condition component, which is derived from
the projection of image and tactile embedding. Consequently,
the image and tactile encoders are optimized concurrently
during the training process. A comprehensive depiction is
presented in Figure 2.

We establish condition on the concatenated visuo-tactile
feature c to reconstruct the current image frame ocur. CVAE
consists of an encoder pθ (·), decoder qψ(·), and visuo-tactile
embedding projector fφ (·), which are parameterized by θ , ψ

and φ separately. We use z to represent the latent variables,
and the reconstructed frame ôcur conditioned on visuo-tactile
feature c can be expressed as:

ôcur = qψ(pθ (ocur, fφ (c)), fφ (c)) (4)

In accordance with CVAE constraints, the target can be
formulated as:

LVAE = E
[
∥ocur − ôcur∥2]+DKL (pθ (z|pθ (ocur),c)∥ N (0,1))

(5)

Notably, the CVAE module is active only during training
and does not impose any additional computational overhead
during test time.

IV. EXPERIMENTS

We evaluate our method on several contact-rich tasks in
both simulation and real-world environments, in order to
clarify the following questions:
(i) Does ViTaS have the capability to solve complicate

manipulation tasks requiring compact tactile informa-
tion (e.g. dexterous hand rotation)?

(ii) How does ViTaS demonstrate generalization and ro-
bustness in tasks involving objects of various shapes,
significant noise or different physical parameters?

(iii) How does ViTaS perform in real-world settings?
All three questions will be elaborated in the following

parts. Moreover, ablation and qualitative study are also done
for the understanding of components in ViTaS.



 LCON,1,i =−E

[
log

∑p∈P1(i) exp( fo(op) · fo(oi) / τ)

∑p∈P1(i) exp( fo(op) · fo(oi) / τ)+∑n∈N1(i) exp( fo(on) · fo(oi) / τ)

]
s.t. P1(i) = { j|(Sim( ft(t j), ft(ti))) ∈ topKmaxk(Sim( ft(ti), ft(tk)))}, N1(i) = S\P1(i)

(2)

A. Simulation Environment Setup

1) Tasks: We conduct experiments using 9 simulated
tasks, categorized into 5 primary parts shown in Figure 3
(a) to (e): (a). shadow dexterous hand tasks [42], [43] based
on Gymnasium [17] (pen rotation, block rotation, and egg
rotation), (b). Robosuite [18]-based tasks (door opening,
lift, and dual arm lift), (c). Insertion tasks originated by
[13] simulated in mujoco, (d). Mobile-Catch environment
implemented by [19] and (e). Block Spinning task created by
[20]. Beyond these foundational experiments, we introduce
a series of auxiliary tasks involving altering object shapes in
Lift or modifying physical parameters in Pen Rotation. The
outcomes of (a)-(d) environments are quantified in terms of
success rate, and (e) is assessed based on training reward.

Egg Rotate Block Rotate Pen Rotate

(a)

Door Dual Arm Lift Lift

(b)

Insertion Mobile Catch Block Spin

(c) (d) (e)

Fridge Pick Place

(f)

Simulation Real-World

Dual Arm Clean Table Pick Place

Fig. 3: Tasks. Our method is evaluated on 9 simulaion tasks
and 3 real-world tasks, with various embodiment types.

2) Tactile sensors: It is crucial to integrate tactile sensors
to obtain tactile data for ViTaS framework. For the 3 in-hand
rotation tasks, we employ the built-in tactile modules. For
Lift, Insertion, and Door Opening tasks, we employ a parallel
gripper equipped with a 32 × 32 × 3 tactile sensor at the
contact surfaces between the gripper and the object. Among
the 3 channels in tactile map, channel 1 and 2 represent the
normal force and the value of channel 3 denotes shear force,
following [44] and [10]. In the catch and block spin tasks,
we enhanced the Allegro hand and Leap hand with tactile
sensors by integrating four 3×3×3 sensors on each finger
(located at the proximal, middle, distal, and tip segments)
and one 3× 3× 3 sensor on the palm. These sensors are
zero-padded to form a 32×32×3 input, following [13].

3) Comparison methods: We compare ViTaS against 4
visuo-tactile representation learning baselines:

• M3L [13]: A visuo-tactile fusion training algorithm
utilizing the MAE encoder for PPO policy learning.

• VTT [14]: A visuo-tactile fusion training method rooted
in the transformer architecture with both image and
tactile data segmented into patches.

• PoE [22]: A VAE-like framework to fuse two modality.
• Concatenation [21]: A multi-modal fusion method with

contrastive method used to help training.

B. Simulation Experiment Results

Our algorithm is compared against 4 baseline methods
across the aforementioned 9 primitive tasks. We evaluate
each algorithm in each environment 5 times under different
random seeds, and average the results when training 3×106

timesteps to obtain the performance metrics.
As the results shown in Table I, several baselines show

excellent performance in simple tasks like Door Opening and
Insertion. However, for tough tasks like Egg Rotation and
Block Rotation, which are contact-rich and require methods
to incorporate visual and tactile information jointly, few
baselines can solve it within a limited horizon, while ViTaS
maintains its performance. This underscores its exceptional
capability to extract features and solve complicate tasks,
clarifying question (i).

TABLE I: Benchmark Performance. Each experiment re-
peats 5 times. Green for optimal results while purple for
suboptimal.

Tasks Steps ViTaS M3L PoE VTT Concat
Insertion 2M 98 72 11 78 19

Door 1M 100 100 98 99 100
Lift 1M 97 20 71 70 76

Pen Rotate 3M 100 73 0 0 2
Dual Arm Lift 1.2M 100 88 92 77 76
Mobile Catch 3M 64 15 0 53 0
Egg Rotate 3M 85 4 0 0 0

Block Rotate 3M 93 11 0 1 4
Block Spin 3M 70 30 20 0 15

Insertion w/ Noise 3M 89 47 20 63 26
Lift w/ Cap 3M 99 54 58 54 87
Lift w/ Can 3M 97 41 52 69 75

Average - 92.9 47.7 36.5 50.3 42.3

In order to assess the generalization capability and robust-
ness of our approach, we introduce auxiliary tasks derived
from the Lift and Pen Rotate tasks mentioned earlier. For the
Lift task, the object shape is modified from a cube to cylinder
and capsule in both training and testing phases, allowing
us to evaluate the method’s resilience to changes in object
geometry. As for the Pen Rotate task, we randomize the



TABLE II: Generalization ability.

Tasks / Method ViTaS M3L

Fixed 99.2 73.1
Random 78.4 42.7

Drop 20.8 30.4

target angle within a large range, enabling a thorough evalua-
tion of the model’s generalization across varying conditions.
We also add Gaussian noise with 0.3 standard deviation in
Insertion task (The intensity of Gaussian noise of different
standard deviation could refer to Figure 6. The experimental
parameters are kept in alignment with the preceding 9 tasks.

As illustrated in Table II, when the object shape is
changed, every baseline model experiences a performance
drop when training 3× 106 timesteps, indicating sensitivity
to these alterations. ViTaS, however, exhibits a negligible
decrease, demonstrating its resilience to variations in object
geometry. Pen rotation, among the most challenging tasks,
is only successfully handled by ViTaS and M3L. When the
target angle is randomized, the agent is required to extract the
most significant information from the current observations
via visual tactile representation learning to make appropriate
moves. In this scenario, M3L struggles to maintain perfor-
mance, while ViTaS continues to solve the task effectively
with less drop than M3L as shown in Table II. Given the
robust performance in 3 auxiliary tasks, we provide a clear
clarification of question (ii).

C. Real-World Experiment

Fig. 4: Real-World Robot Setting.

1) Tasks: To better understand the overall performance
of ViTaS, we develop 3 real-world experiments to show
the effectiveness, shown in Figure 3 (f): (1). Dual Arm
Clean (DAC). The robot has to sweep a small amount of
rubbish (e.g. a piece of paper ball) to the trash can. (2).
Table Pick Place (TPP). The robot has to move the bottles
or cans to the coaster. This task has two settings: one (TPP-
1) using a single type of bottle and the other (TPP-3) using
three types. (3). Fridge Pick Place (FPP). The robot has to
move the bottles from third level to the second of refrigerator.

2) Experiment setup: The overall working space is shown
in Fig 4. We use Galaxea-R1 Humanoid Robot for manipu-
lation, with tactile sensors attached to the end effector.

• Camera: we use camera for RGB visual information.
Only the head camera of Galaxea-R1 (Zed 2) is used
in all ViTaS experiments, while 2 wrist cameras (Re-
alSense D435i) are needed for better performance in
baseline experiments.

• Tactile sensors: We use sensors mentioned in [45] for
tactile information, which produce real-time 16×16×1
1D haptic maps. The tactile sensors is attached to the
gripper, obtaining tactile maps during data collecting
and inference. A snapshot is shown in Figure 4.

Notably, the real-world setting is slightly different to that in
simulation, so some minor changes have been made to offer
better empirical results in real world. To exploit the 1D haptic
map of our tactile sensor, the tactile encoder is adjusted for
appropriate shape. Moreover, we adopt imitation learning
paradigm [46] to further test the capability of extracting
and integrating feature of ViTaS. Specifically, we replace the
encoding process with that in ViTaS, and we collect 50 real-
world expert trajectories for the training of each task. Both
ViTaS and DP are trained for 103 epochs, and then transfer
to real-world humanoid to calculate success rate.

3) Comparing method: We compare ViTaS with Diffusion
Policy [46], a pioneering generative approach for robotic
manipulation that formulates action sequence prediction as a
conditional denoising process. This method employs a time-
series diffusion model to progressively refine Gaussian noise
into optimal actions conditioned on image observations,
particularly effective in high-dimensional continuous control
scenarios. We shall to emphasize that the input of ViTaS
is sole head camera and tactile sensor, while head, left,
right cameras for DP. Both methods adopt learning-from-
scratch CNN encoders. The motivation is to show ViTaS
owns better performance even possessing less information,
further clarifying the merit of ViTaS.

4) Results: We have done Table Pick Place and Fridge
Pick Place with 25 repetition, with the target position shifted
slightly each time. We also complete Dual Arm Clean
with 10 repetition, putting only one piece of litter during
benchmarking. The results are shown in table III.

TABLE III: Real-world experiment results.

Method / Tasks DAC TPP-1 TPP-3 FPP Average

ViTaS 30.0 42.0 36.0 76.0 46.0
DP 20.0 36.0 24.0 40.0 30.0

It is evident that ViTaS outperforms DP in 3 real-world
tasks even using less camera information, with an average
success rate increase of about 16%. Moreover, The compari-
son between TPP-1 and TPP-3 reveals that ViTaS could offer
a better generalization since the drop between two tasks of
ViTaS is lower than DP. It is noteworthy that there may be
occlusion of bottles by robotic arm from head camera view.
The results indicate that tactile could help getting over such
adverse factors, further showing the capability to integrate
different modalities of ViTaS. Complete acting procedure
will be provided in the supplementary video. Given the



better performance and generalization ability in real-world
experiments, we reach the answer to question (iii).

D. Ablation Study

To verify the fidelity of each component in ViTaS, we con-
duct extensive ablation experiments, showing the necessity
of tactile information, soft fusion contrastive, CVAE module
and the choice of K. The overall ablation results are presented
in Table IV, where we use abbreviations of experiments
in the first row, corresponding to ViTaS, w/o. Tactile, w/
Unified Encoder, w/o. soft fusion Contrastive module, w/
Time Contrastive, K = 1 and K = 50. Detailed analysis of
each experiment are clarified in the following sections.

TABLE IV: Ablation study. Each experiment repeats 5
times. Green for optimal results while purple for subop-
timal.

Tasks / Methods V w/o. TA U w/o. C TC K1 K50
Insertion 99.2 88.1 61.6 90.3 75.2 83.3 78.7

Block rotation 92.7 67.7 18.4 67.7 79.5 88.0 70.1
Egg rotation 85.3 24.3 3.3 6.5 57.7 65.2 3.6

Average 92.5 60.9 27.1 54.7 70.6 78.8 67.3

Is tactile information crucial? We conduct 2 main
experiments in this part. Firstly we eliminate the tactile
information, retaining only the visual data, and solely uti-
lize the image encoder, while handling the corresponding
tactile information through zero-padding. Additionally, the
workflow outlined in [13] employs a unified MAE encoder
across both modalities, disregarding the inherent distinctions
between them. This oversight could potentially leads to less
discriminative feature representations and a notable reduction
in overall effectiveness. To prove that tactile maps can offer
unique information beyond visual inputs can provide, we
build another experiment that image and tactile are directly
concatenated and subsequently fed into a shared encoder.

Fig. 5: Learning curve for tactile and CVAE. (a) shows
results for ViTaS,ViTaS w/o. tactile information and w/
unified encoder, while (b) indicates pen rotation w/o. CVAE.

The results in Figure 5 (a) show that when ablating tactile
information, the success rate in 3 benchmarks drops 34% on
average. Thus, tactile information gets crucial in dexterous
operation tasks like rotation, while it also makes difference
in simpler tasks like Insertion.

Using a unified encoder, however, is not a good choice
either, given the poor performance in the U-column in
Table IV, especially for the 2 in-hand rotation tasks. We then
clarify that tactile has some complementary information to
image, which cannot be extracted via a unified encoder.

How much do CVAE and soft fusion contrastive
contribute to ViTaS? In order to clarify the effectiveness
of each component, we remove the CVAE and soft fusion
contrastive components separately, conducting independent
tests on the same benchmarks and comparing results.

Results of ViTaS without CVAE in pen rotation task are
shown in Figure 5 (b). The learning curves show that the
performance drops heavily (about 25%) without CVAE, and
the training process is rather unstable. Moreover, as shown
in Table IV, we remove soft fusion contrastive learning and
the results drop for about 28.9%, with a surge in variance.

K in soft fusion contrastive learning. We explore the
impact of varying K, for instance, setting it to 1, 10 (ours)
and 50, to observe how the results are affected. It is note-
worthy that image and tactile at the same timestep are the
only positives for each other when K = 1, adopting the same
process as conventional cross-modal contrastive learning.
Therefore, by comparing results between ours and K = 1,
we can also clarify whether soft fusion contrastive could
outperform conventional contrastive learning method.

The last two columns of Table IV show the effectiveness
of different K in ViTaS. The results when K = 1 show
that though conventional contrastive learning can achieve
relatively excellent performance, it still has performance gap
with our method (i.e. K = 10), while too large K value as
50 also causes a drop in performance.

Soft fusion contrastive v.s. time contrastive. To verify
the effectiveness of soft contrastive in another perspective,
we carry out experiments utilizing an alternative contrastive
approach, namely time contrastive, to highlight the indis-
pensable role of cross-modal soft fusion contrastive learning.
Neighboring frames (i.e., a fixed number of preceding and
succeeding frames) are treated as positives in this method,
while distant frames serve as negatives, echoing with [47].
The motivation behind this lies in emphasizing that, despite
frames within close time intervals often appearing to be
similar, it is crucial during the contrastive learning process to
identify the K most analogous frames, which may not nec-
essarily be temporally adjacent. This distinction underscores
the importance of going beyond mere time contrastive. As
shown in table IV, time contrastive learning cannot surpass
soft fusion contrastive, which proves the necessity.

In conclusion, our ablation study delves deep into our al-
gorithm to analyze the effectiveness of each component. The
results prove that tactile information, soft fusion contrastive
learning and CVAE are of high importance, while soft fusion
contrastive performs better than other contrastive methods
like conventional contrastive and time contrastive. We show
the necessity of every design we use.

E. Qualitative Analysis

To effectively demonstrate the impact of CVAE module,
we employ weights from ViTaS in the Egg Rotate task for
image reconstruction from pure gaussian noise conditioned
on visuo-tactile embedding. We compare the performance
under varying levels of Gaussian noise added to the obser-
vation space (both visual and tactile) against the token-based



MAE method used in M3L.

noise on tactile noise on visual noise on bothorigin

(a)

(b)

0.1 0.2 0.3 0.4 0.50

ViTaS

M3L

Img Obs

Noise Level

Fig. 6: Reconstruction visualization (a) compares the re-
construction quality of ViTaS and M3L under different level
of observation noise. (b) shows reconstruction results of
ViTaS under heavy noise applied to different modalities

As illustrated in Figure 6 (a), the results indicate that our
approach surpasses the token-based MAE in reconstructing
critical interaction details, such as finger joint positions
and the egg’s location, which are vital for the task. Our
method also maintain robust under higher level of noise,
underscoring the high quality of the visuo-tactile embeddings
used as conditions.

Furthermore, we conduct experiments where heavy
noise (noise level 0.5) is introduced to either the visual
or tactile inputs while keeping the other noise-free. As
shown in Figure 6 (b), experiments yield superior generation
performance compared to scenarios with heavy noise in both
inputs, showing complementary nature of two modalities.

V. CONCLUSION AND LIMITATIONS

In general, we introduce ViTaS, a succinct yet effective
visuo-tactile fusion framework. Drawing an analogy to hu-
man physiology, we extend the application of visual and
tactile perception to the domain of reinforcement learning,
yielding remarkable results in both simulated and real-world
experiments. More specifically, soft fusion contrastive learn-
ing is proposed to extract key features from one modality
according to another, and a CVAE module is developed to
utilize complementary information from different modalities.
Real-world experiments verify the effectiveness of ViTaS.
Ablation and qualitative analysis are meticulously conducted,
exhibiting the necessity of each comonent in ViTaS.

Despite its success, ViTaS faces 2 main limitations. The
first is that due to the physical capability and the bottle-
neck of RL in high-dimensional observation, some high

dynamic accurate manipulation like pen spinning in real-
world remains challenging. The other observation is that
the potential of visuo-tactile sensing in deformable object
manipulation [48] warrants additional exploration. In the fea-
ture, we will further explore the ability of fused visuo-tactile
information in more complex scenarios, through synergistic
integration with advanced simulation platforms.
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